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In the preceding paper, a complete set of basic gauge-invariant variables was 
defined that uniquely characterizes cosmological perturbations in homogeneous, 
isotropic, ideal-fluid universe models. The calculations were presented in some 
detail for the case of a general perfect fluid with two essential thermodynamic 
variables. Among other things, it was demonstrated that the aforementioned set 
consists of 17 linearly independent, not identically vanishing gauge-invariant 
variables. One can think of these basic variables as having two aspects. First, 
their definitions are such that they provide a unique representation of the physical 
perturbation. (By way of digression, inspection shows that such perturbations 
can be regarded as being the elements of a certain quotient space.) Second, 
any complicated gauge-invariant quantity is obtainable directly from the basic 
variables through purely algebraic and differential operations. The object here is 
the systematic derivation of the linear propagation equations governing the 
evolution of these basic variables. To make clear the relation of the present 
formalism to a series of standard results in the literature, this paper also points 
out how general propagation equations can be adapted to situations where the 
pressure vanishes in the background. Finally, the physical interpretation of basic 
variables and comparison with other gauge-invariant approaches are briefly 
presented. 

1. I N T R O D U C T I O N  

The  diff icul t ies  facing the theory o f  per turba t ions  in h o m o g e n e o u s  and 
isotropic  cosmolog ica l  mode l s  are wel l  known.  A formal  descr ip t ion  is ava i l -  
able  i f  one explo i t s  the v iewpoin t  that the d i rec t  way  to formula te  l inear  (or  
h igher  order)  per turbat ion  theory for  the genera l - re la t iv is t ic  f ie ld  equat ions  
is to use one -pa rame te r  famil ies  o f  exac t  solut ions  to these equat ions  (Ehlers,  
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1973; Wald, 1984). In a neighborhood of a background solution, one may 
then be able to effectively construct such families by first selecting out of 
the nonlinear equations the part linear in the "amplitude" of the perturbation 
and next restricting attention only to this part. However, the resulting theory 
is plagued by the problem that the choice of variables to represent the 
inhomogeneities depends on the gauge chosen. Hence, probably, with gauge- 
dependent variables there is no possibility of explaining the origin of perturba- 
tions, which eventually give rise to galaxies or clusters of galaxies. 

One reasonable way out of this impasse is to look for gauge-invariant 
quantities that code the information we need to discuss density inhomogene- 
ities in an almost-Robertson-Walker universe model. The construction of 
these quantities was pioneered by Bardeen (1980), who gave the first gauge- 
invariant treatment of the linearized Einstein field equations for the most 
general matter-associated perturbations away from a homogeneous and iso- 
tropic space-time. Based on the theoretical framework of Hawking (1966), 
Ellis and Bruni (1989) also devoted considerable efforts to the problem of 
adapting perturbation theory to the requirements of gauge invariance. How- 
ever, even if we provide a clear interpretation of how the gauge-invariant 
quantities are related to density perturbations, there does remain one additional 
complication which simply cannot be avoided: Due to the gauge freedom in 
general relativity corresponding to the group of diffeomorphisms of space- 
time, two perturbations 8~0 and 8 ~  are equivalent if they differ by the action 
of an "infinitesimal diffeomorphism" on the background solution (Ehlers, 
1973; Banach and Piekarski, 1996a). Strictly speaking, then, the object of 
most physical interest is not just one perturbation 8~0, but a whole equivalence 
class [~0]  of all perturbations ~ which are equivalent to ~ 0 .  Another 
way of looking at this is to say that the gauge problem is a consequence of 
the general covariance of Einstein's theory of gravity (Hawking and Ellis, 
1973). Therefore the physical perturbations [8~0] are elements of a certain 
quotient space, and the gauge-invariant variables should be such as to enable 
a unified and transparent description of this quotient space. 

In a previous paper (Banach and Piekarski, 1996a), we first defined a 
complete set of basic gauge-invariant variables with a nontrivial geometrical 
meaning and then proved that the equivalence class [~0]  is uniquely deter- 
mined from these basic variables. For nonbarotropic perfect fluids, we have 
found that the aforementioned set consists of 17 linearly independent, not 
identically vanishing gauge-invariant quantities. Also, we have shown there 
that any complicated gauge-invariant quantity can be constructed directly 
from the basic variables through purely algebraic and differential operations. 
The object here is the systematic derivation of the linear propagation equations 
governing the evolution of these basic variables. The calculations are pre- 
sented in some detail for the case of a general perfect fluid with nonzero 
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pressure, the physics of which is expressed by a suitable equation of state 
involving two essential thermodynamic variables (Misner et al., 1973). Much 
of the literature on relativistic hydrodynamics in the late universe examines 
only the behavior of a perfect fluid for pressure-free flows. Our discussion 
will not make this restriction, but later in the text we shall point out how 
linear propagation equations can be adapted to situations where the pressure 
vanishes in the background. Finally, by giving an explicit interpretation of 
the Ellis and Bruni variables (Ellis and Bruni, 1989) in terms of our formalism, 
we shall illustrate the general thesis of Banach and Piekarski (1996a) that 
any gauge-invariant quantity can be defined directly from the basic variables. 

To the best of our knowledge, this paper is also the first analysis which 
explains why the gauge invariance in itself does not completely resolve the 
ambiguity of what one means by a physical solution to the linearized field 
equations. As a matter of fact, in Sections 3.2 and 4.2 we shall prove that 
some additional arguments are always necessary to eliminate the unphysical 
solutions of gauge-invariant equations. Here it is perhaps important to mention 
that these spurious gauge-invariant solutions have nothing to do with the 
"gauge mode" solutions which can be directly annulled by a gauge transforma- 
tion and thus have a different explanation and status. 

For simplicity, this paper will focus upon the issue of deriving linear 
propagation equations in the case when the background space-time considered 
is described by a Robertson-Walker metric with flat spatial sections (k = 
fJ). It should, however, be stressed that in our approach essentially nothing 
changes if we allow for nonzero background three-space curvature. Indeed, 
in Sections 5.2 and 6 of Banach and Piekarski (1996a) we tried to include 
enough introductory material for three-spaces of positive or negative curvature 
or flat space (k = + 1, - 1 ,  0) so that the reader can easily pursue the topic 
of her or his interest further. Specifically, we have derived there a complete 
set of basic gauge-invariant variables without imposing any restrictions on 
the curvature k of a three-space. 

We organize our paper in the following way. In Section 2 we give, for 
the reader's convenience, a short account of perturbation theory in its "naive" 
formulation, but drop any assumptions about the gauge. In Section 3 we 
introduce basic gauge-invariant variables and then rewrite the linearized field 
equations in terms of these variables. Contact with the standard results is 
made in Section 4, where we show how the linearized field equations look 
when the pressure vanishes in the background. The physical meaning of basic 
gauge-invariant variables is discussed in Section 5, in order to find a simple 
representation of density inhomogeneities in an almost-Robertson-Walker 
universe model. Section 6 is for discussion, conclusion, and comparison with 
other gauge-invariant approaches. 
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One additional word regarding the notation and presentation of this 
paper. For brevity, without further comment we shall use those symbols and 
results which either are reasonably standard or appear for the first time in 
Banach and Piekarski (1996a), and the analysis proceeds in a way similar to 
that already made familiar. 

2. R E V I E W  OF  T H E  T H E O R Y  OF P E R T U R B A T I O N S  

2.1.  De f in i t i on  o f  a B a c k g r o u n d  S o l u t i o n  

The equations of relativistic linear perturbation theory are most conve- 
niently derived by linearizing Einstein's equations, 

- -~R ~ g '~  = T '~13 (2.1a) 

and the equation of  balance of  number density, 

N~:,, = 0 (2.1 b) 

about a k = 0 Robertson-Walker background solution. The stress-energy 
tensor is taken to be that of a general perfect fluid, 

T ~'f~ = (e + p ) u ~ u  f~ + pg~'~ (2.2) 

where e and p are the energy density and pressure of  the fluid and u '~ is the 
fluid coordinate peculiar velocity. Here we shall restrict our attention to 
equations of state of the form 

e = e(n ,  T ) ,  p = p ( n ,  T )  (2.3) 

where n is the number density and T is the temperature. Clearly, the number 
flux vector N ~ satisfies the property that 

N ~' = n u  '~ (2.4) 

Knowing n, T, u '~, and g'~, one may obtain T '~ and N '~ from equations 
(2.2)-(2.4). Thus the general perfect fluid can be described by giving a 
number density n, a temperature T, a four-velocity u '~ normalized by u~'u,~ = 

- 1, and a contravariant metric tensor g"~, which are required to obey equa- 
tions (2.1a) and (2.1b). 

In the case of a k = 0 Robertson-Walker geometry, it is not difficult 
to show that the evolution equations assume the form (Peebles, 1993) 

3 H  z = e0 (2.5a) 

- 6 ( H  + H 2) = e0 + 3p0 (2.5b) 

do + 3(e0 + p o ) H  = 0 (2.5c) 
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rio + 3noH = 0 (2.5d) 

where H is Hubble's parameter related to the expansion factor R by 

H := R/R (2.6) 

and where an overdot indicates differentiation with respect to time. In equa- 
tions (2.5), the objects eo and P0 are defined by 

eo := e(no, To), Po := p(no, To) (2.7) 

As to the meaning of no and To, these are, respectively, the background 
number density and the background temperature. Thus, in this case, the 
independent dynamical variables are chosen to be R(t), no(t), and To(t). Equa- 
tion (2.5c) then becomes 

3 
To - (eo - noeM + po)H (2.8) 

eT 

where 

eM := Oeo/Ono, er := Oeo/OTo (2.9) 

2.2. Gauge-Dependent Perturbations 

We use the same notation as in Banach and Piekarski (1996a) and thus 
we define q3~(x) by 

~,(x) := (g'~l~(e, x), u'~(e, x), n(e, x), T(e, x)) (2.10) 

Consider an open interval I := ( - d ,  d)  of R, d > 0. Let {q3,; e E I} be a 
one-parameter family of solutions of equations (2.1 a) and (2.1 b). It may be 
thought of as a "curve" in the space of solutions passing through the "point" 
given by 

~o(X) := ~(x)l~=0 (2.11) 

which we call the background solution. To illustrate the use of perturbation 
techniques, we consider the case of a k = 0 Robertson-Walker background 
solution; thus we set 

g~176 x) = - 1, 

u'~(0, x) = ~% 

n(0, x) = no(t), 

g~ x) = 0, 

T(O, x) = To(t) 

grS(0, X) = R-2(t)~ r~ (2.12a) 

(2.12b) 

(2.12c) 

where ~r~, ~'~0, and similar symbols denote the Kronecker deltas. 
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Suppose that an exact solution ~o is known and suppose that we are 
interested in studying a situation for which the deviation of ~ ,  from ~o is 
small. In perturbation theory (Ehlers, 1973; Wald, 1984), the parameter 
measures the size of perturbation in the sense that ~,(x) depends differentiably 
on t for each x ~ X and c-tJ0(x) is a background solution. Approximation 
methods aim at constructing ~,(x) for small e, and such a construction is 
feasible if we can determine the time evolution of the following objects: 

, , ,:__ ' __ (o . /  , 
no \OeJ,,= o 

It is convenient to think of 

U '~ := ( a u " l  (2.13a) 
\ o~ J,,=0 

l (aT)  (2.13b) 
K :=  To I~=0 

8qJ0 := (Qaf~, u ~, noM,  ToK)  (2.14) 

as being the infinitesimal perturbation of ~0- 
Since {q3,(x); e ~ I} is a one-parameter family of exact solutions of the 

full nonlinear field equations, we can derive a "closed" set of dynamical 
equations for 8~0 directly from equations (2. la) and (2. lb) by first differentiat- 
ing them with respect to e and then setting in the result e equal to zero. 
However, before doing so, we first define the useful quantities D r~, D, and 
F ~'~ by 

I 2 rr; I ~  ~)rs (2.15a) D ~ :=  TR Q ,  D := 3 ~ . ~  

F ~ := D ~~ - D 8  rs (2.15b) 

Here, of course, F ~~ is the second-rank, symmetric, traceless three-tensor. 
Differentiation of equations (2. l a) and (2. l b) with respect to ~ at e = 0 then 
will yield the linear propagation equations we seek; they are of the form 

2 D + 2 QOO 1 tFrS _ 28rsD.rs ) = 1 
n 3-H aOr.r + + ~ "  .~.~ 3 H  2 

( 3 )  , (o)" + 3HD + HQ ~176 + 1:t + ~ H 2 QOO + -d~ ~rSQOO 

1 aOrr + HOor + 1 I + -~ ~ .~ - ~  (F~".~s - 2~.*O,j = ~ P 

1 (~rpO0 s s Or F~s.~ - 28~sD~ - -~ ,~ ~ .m - 8p Q .vs) - H ~ Q ~ 1 7 6  

- - -  E ( 2 . 1 6 a )  

(2.16b) 

= _2R2I : I (U r + Qor) 

(2.16c) 
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1 sp " Or 1 ~rst~O p (Frs)" d- 3 H F  ~.~ + ~ ( ~ r p Q O s p  .~_ ~ a ,p) __ 3 ~ ,~ ,P 

+ 2 3 H ( ~ r p a O S , p  _]_ ~spg')Or ~ __ ~ r s ( ) O p  v r,~ ,pJ . . v  ~ ,p 

1 ( l ~r.~rcq~oO o 
+ - v ) =  

= R - 2  ~)pqFrS,pq - ~ rqFSp ,p  q - g s q F r p , p  q -]- -~ g r s f p q , p q  

-- 3/)-t-/I)[-t- U r r = O  

(2.16d) 

(2.16e) 

where a comma denotes the derivative of a "three-tensor" with respect to x r 
r = 1, 2, 3, and where E and P are given by 

E := noeMM + ToerK, P := noPMM + TopTK (2.17) 

with 

PM := apolOno, PT := apolaTo (2.18) 

As regards the definitions of eM and er ,  see equations (2.9). 
Here is the best place to mention that the above results are straightforward 

but rather tedious consequences of equations (2.9) introduced in Banach and 
Piekarski (1996a). For lack of space, we will not comment on the technical 
details leading to the derivation of equations (2.16); however, these details 
are available on request. At this point we only mention the following: in 
deriving the linearized field equations, use was made of the fact that 2U ~ 
equals - Q0O [see B anach and Piekarski (1996a), equations (4.10a) and (4.11)]. 
Moreover, we adopt the summation convention: if a Latin index appears 
twice in the same term, once as a subscript and once as a superscript, the 
sign E will be omitted (we recall that Latin indices range from 1 to 3, Greek 
indices from 0 to "3). 

Now, we can verify that every solution of equations (2.16) obeys 

E - 2H(U~r - 3/)) + 3H(E + P) = 0 (2.19) 

A further study of equations (2.16) yields the supplementary balance law, 
interpreted as the equation of balance of U r, 
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[ l ]  ur  + a~ + 5 H + ~ ( H ) "  (ur  q- Q~ + ~-~ ~ rs Q~176 - ~l ~ = 0  

(2.20) 

These mathematical consequences of equations (2.16) can also be derived 
by directly differentiating the equation of motion of the matter T'~:I 3 = 0 
with respect to e at e = 0. In other words, equations (2.20) are obtainable 
from the balance law, which is a local conservation of energy and momentum. 
The background energy and pressure (e0 and P0) or their time derivatives @o 
and P0) do not appear in equations (2.20), because the unperturbed equations 
(2.5) tell us that these background quantities can be expressed in terms of 
H, H, and (H)'. 

Let 8~0 or P denote the solution of equations (2.16). The analysis 
indicates that this solution is unique only up to a Lie derivative of the 
background solution with respect to an arbitrary vector field on the space- 
time manifold. In a sense, the failure of equations (2.16) to produce the 
unique solution to the "Cauchy problem" is of no physical importance beyond 
the above comment, because we can easily obtain the equivalence class [8~0] 
of ~ o  once one choice of 8~0 has been made. Moreover, equations (2.16) 
play a fundamental role in perturbation theory. One obvious reason for this 
is as follows: there is an infinite number of  exact differential consequences 
of equations (2.16) and some of these consequences describe the evolution 
of gauge-invariant variables. Clearly, the inverse statement is not true. 

On the other hand, the usual approach to the derivation of the equations 
governing linearized perturbations in cosmology does not aim at describing 
the equivalence class [8~o] in a unique way. Rather, the basic purpose of 
this approach is to impose at the beginning a synchronous gauge, 

Q0O = 0, Q0, = 0 ( ~  U ~ = 0) (2.21) 

or any other gauge condition to simplify the form of the metric and/or matter 
perturbations and then work only with the specific metric components and 
matter variables. However, as already observed by Bardeen (1980) and Ellis 
and Bruni (1989), this "naive" approach obscures the real situation. Indeed, 
"if the gauge condition imposed to simplify the metric leaves a residual gauge 
freedom, the perturbation equations will have spurious gauge mode solutions 
which can be completely annulled by a gauge transformation and have no 
physical reality" (Bardeen, 1980, p. 1882); "while if it is fully specified, its 
relation to what we really want to know (the spatial variation of density in 
the Universe) is convoluted and difficult to interpret" (Ellis and Bruni, 1989, 
p. 1804). 

The only way out of this impasse is to drop any assumptions about the 
gauge and to look for a complete set of basic gauge-invariant quantities that 
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code the information we need to describe the equivalence class [gq30] in 
a unique way and to characterize density inhomogeneities in an almost- 
Robertson-Walker universe model. 

2.3. Comments Concerning the Existence of Perturbation Theory 

Cases are known in which linearized theory gives an incorrect description 
of the collection of solutions of the field equations near a fixed background 
solution. One such nontrivial example was given by Fischer et al. (1980), 
who considered the issue of linearization stability for the case of pure gravity, 
i.e., the existence of a one-parameter family of exact solutions corresponding 
to a solution of the linearized field equations. Among other things, they were 
able to prove that if the background space-time (X, g~'~) possesses a compact, 
spacelike Cauchy hypersurface, then the vacuum Einstein field equations are 
linearization stable about (X, g~)  if and only if (X, g~)  does not possess a 
Killing vector field. If (X, g~'~) has a Killing vector field, then it is necessary 
that the infinitesimal perturbations Q~a of g ~  satisfy a quadratic integral 
constraint involving the Killing vector field in order that a one-parameter 
family {g,~l~(~, o); e e I} corresponding to Q~I3 does exist. This imposes 
further conditions containing only the first-order variations Q~a. Thus in some 
sense the linearized theory of pure gravity near a space-time with symmetry 
is not sufficient to capture the dominant effects of the nonlinear theory. 
However, as remarked already by Wald (1984, p. 187), "linearization stability 
is believed to hold for asymptotically flat perturbations of all asymptotically 
flat background space-times (even if Killing fields are present), although this 
has been proven only for the fiat background space-time." 

In the context of cosmology, D'Eath (1976) has examined the nature of 
full nonlinear perturbations of the Robertson-Walker universes, together with 
their relation to solutions of the linearized field equations. In this case the 
unperturbed and perturbed solutions contain matter. Thus there is no instability 
in the sense of Fischer et al. (1980) or Brill and Deser (1973), for essentially 
obvious reasons. Moreover, physically reasonable solutions of the linearized 
field equations do indeed correspond to solutions of the full nonlinear equa- 
tions near the Robertson-Walker backgrounds. Only the collection of solu- 
tions of the field equations near the k = + 1 background has unusual features, 
and the linearized treatment (while certainly useful) does not allow one to 
understand these features completely. In the k = - 1  case, matter quantities 
may vary freely within uniform bounds over the initial surface. If k = 0, 
one has to consider perturbations which die away at large distances. Further 
interesting details can be found in D'Eath (1976). 
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3. THE GAUGE PROBLEM AND ITS SOLUTION 

3.1. A Complete Set of Basic Gauge-Invariant Variables 

Because of a gauge freedom in general relativity corresponding to the 
group of diffeomorphisms of space-time (Hawking and Ellis, 1973), two 
infinitesimal perturbations ~ 0  and ~ represent the same perturbation if 
(and only if) there is a vector field v on the space-time manifold X such that 

5q3~ = ~q3o + ~vq3o (3.1) 

where ~vq3o denotes the Lie derivative of a background solution q3o with 
respect to v. Strictly speaking, then, the object of most physical interest is 
not just one perturbation 8q3o, but a whole equivalence class [8q3o] of all 
perturbations ~5q3~ which are equivalent to ~Jo. These definitions do not tell 
us directly how to use [8q3o] in practical calculations, or whether such calcula- 
tions are possible at all. However, there is a definite description of [8q3o] in 
terms of a complete set 

D := {• F, 1"], i f ,  A, A "s, S ijrs} (3.2) 

of basic gauge-invariant variables. This set, which we derived in Section 5.2 
of Banach and Piekarski (1996a), may therefore be thought of as representing 
the equivalence class [8q3o] of ~ o :  

[8q3o] r D (3.3) 

The correspondence (3.3) defines a "coordinate system" on the quotient 
space ~/@o to which [8q3o] belongs. [See Banach and Piekarski (1996a) for 
the precise definition of this quotient space.] Thus one can construct a mapping 
A which is a bijection from ~/~'o onto the "vector space" ~ such that if 
[~do] E ~/~o, then D = A([gq3o]) is a set of basic gauge-invariant quantities 
associated with [8q3o]. In Banach and Piekarski (1996a, Section 6) we often 
denote the gauge-invariant perturbation [~q3o] by P; there, we also name 
the image space of ~/~0. It should be obvious now that one can extract 
[~q3o] ~ ~ /~o  from D ~ ~ in a unique way and conversely. Another welcome 
feature is that any complicated gauge-invariant quantity can be constructed 
directly from D through purely algebraic and differential operations (Banach 
and Piekarski, 1996a). 

The explicit expressions for the gauge-invariant variables in D have a 
simple form if given in terms of rescaled perturbations {Q0O, QO~, D, F rs, 
U% M, K} defined by equations (2.13) and (2.15); these expressions take 
the form (Banach and Piekarski, 1996a) 

• := Q0O + 2U o = 0 (3.4a) 

F := K + (3HTo)-~i"o M (3.4b) 
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where 

a := _�89 + ~H-2(I : IM _ H M )  (3.4c) 

OM 
I T  := - 3 R 2 H Q  ~ - 3R2HU ~ + gr.~ (3.4d) 

Ox s 

3 3 1 u r  
A : =  ---~ QOO _ ~I 1~ --I- ~I ,r + H-z I : IM (3.4e) 

/ l 1 
Ar~ := H--" Fr" 2-H (grPUS'P + g'wurp)' + - ~  UP'PSrS (3.4f) 

S ijrs :~-. ~sq~p[izjlr,pq- ~rq~p[iz]lS,pq (3.4g) 

Z rs := 2(-~M - D)~ rs - 2F  r~ (3.5) 

The importance of D is illustrated by the following property (Banach 
and Piekarski, 1996a): two infinitesimal perturbations ~ 0  and B~3~ are equiva- 
lent if (and only if) they determine one common set of basic gauge-invariant 
variables, i.e., if (and only if) D equals D'. Our conclusion, then, is that 
[~u30] can be identified with D. Also, as we have already remarked, with 
equations (3.4) we have a set of basic variables which enables us to calculate 
other gauge-invariant quantities directly from D through purely algebraic and 
differential operations. In this sense, then, the set D is complete. Further 
details concerning these problems are given in the Appendix of Banach and 
Piekarski (1996a); see also Section 5 of this paper. 

We are now in a position to derive useful propagation equations for the 
basic gauge-invariant variables. 

3.2. Propagation Equations in Gauge-Invariant Variables 

A set of deterministic equations can be obtained directly in terms of the 
basic gauge-invariant variables defined in Section 3.1. These equations are 
attractive for at least four reasons: (a) they lead to a unique solution of the 
"Cauchy problem;" (b) their form is independent of the gauge chosen; (c) 
any gauge-invariant perturbation D e ~b is a solution of these equations; 
and (d) none of the solutions of equations (3.6) can be annulled by a gauge 
transformation. Nevertheless, it is perhaps important to stress that the gauge 
invariance in itself does not completely resolve the ambiguity of what one 
means by a physical solution to the linearized field equations, and some 
additional arguments are always necessary in order to eliminate those mathe- 
matical solutions of gauge-invariant equations which do not belong to the 
image space ~b of ~/@0- These arguments are given in Section 4.2. We also 
prove there that such problems cannot be avoided and thus are explicitly or 
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implicitly present in any gauge-invariant approach to cosmological 
perturbations. 

One can obtain exact propagation equations for the basic variables D, 
defined by equation (3.2), from equations (2.5), (2.8), (2.16), and (3.4); as 
a result we have 

[ ' = 3 [ ~ o ( e o - - n o e M + P o ) ( l  + T o e r r l - - ( e r  
eT eT / + Pr - n0et~rr)]/-/F 

(3.6a) 

( l )  1 ] 1 ) + 2  H + ~ H I ~  1 + (H)" 
3R2H 3 ~  ~ , r  

_ 1 
6H To(er + 3pr)I" + Top____~r ~r~F (3.6b) 

6RZHH ,r~ 

(~r)-- "Jl- 5H -Ji- ~ (H)" ~ r  _~_ 6H 2 _1_ 4H "3!- 2 ~ H(H)" 

Hz [(H)'] 2 + ~ (H)-  fl r + ~5 1 + 3HH (H)" ~r~flPp~ 

- - ~ r s ~ P q I " 4 ~ q s - l - 3 { l [  1 2 1  ] 
2R H -~ To ~ er - 1 - ~i H - -~s H(H)" Pr 

+ l:ler p T - - n o e m r - - ( e o - - n o e M + P o )  

"-if- nopMr + (eo -- noeM + Po) 8rsF~ (3.6c) 
TAJ '" 

A = 31-1 (3.6d) 

[ ' ]  (Ar~) " +  5 H + 2  Ar~+ 6H z + 81:t + ~ (H)- A r~ 

I 1 (Srpw~, + ~.~pwr, ) + ~ ~r~wp4, 
2H 

_ 3 (8~pw~p + ~PWrp ) + 8rsw',p 
2 

3 = R-2 ~PqArS,pq -- -~ ~rqASppq 
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3 i ) --  -~ ~sp Arp,pq "4- "~ 8rsApq,pq 1 
24R4H 2 ~)Pq(~rk~'~S,kpq -~- ~sk~rkpq ) 

1 _ _  ~rk~.~,,l'l p , 
+ 12R4H 2 ~ .p~,, 

s ijrs : __ 2H(~sq~  p[i A J]r,pq __ ~rq~p[i A JlS,pq) (3.60 

where 

02e0 
eMr:= o ol0-n0-~ e r r : = - -  

t92e0 
OT~ (3.7a) 

O2po 
tgT2 (3.7b) 

O po 
Pm'r := o Oto~no ~ ' '  Prr  := - -  

2 R Z H  ,~ 
(3.8) 

With equations (3.7) we find that the form of the coefficients eMr,  err, and 
similar objects may be determined directly from the equations of state for 
the background perfect fluid. 

The idea of using such gauge-invariant quantities and propagation equa- 
tions was originally proposed by Gerlach and Sengupta (1978b), and initial 
aspects of our formalism (Banach and Piekarski, 1996a) have been developed 
in various papers [see, e.g., Ehlers (1973) and Wald (1984)]. As far as we 
are aware, the full set of equations given here has not been obtained before, 
although Ellis e t  al. (1989) go a long way toward it in the case of a barotropic 
perfect fluid where p and e are functionally dependent: p = p(e); see their 
discussion directly after equation (21), p. 1821. Also, as demonstrated in 
Section 6, our equations are related to those obtained by the harmonic decom- 
position of three-fields [see, e.g., Bardeen (1980) and Gerlach and Sengupta 
(1978a)] but are, we believe, more fundamental and more convenient in 
many applications. 

Gauge-invariant variables provide a focal point for discussing density 
inhomogeneities in an almost-Robertson-Walker universe model. In fact, of 
the equations presented, the one of most physical interest is that for IT. As 
we shall soon see, the gauge-invariant quantity l~ r and its magnitude most 
closely correspond to the intention of the usual M in representing the fractional 
density increase in a comoving density fluctuation. In fact, to first order in 
the deviations from the background solution, the gauge-invariant quantity 
n0R-21T can be identified with the spatial gradient of the number density n. 
Thus equation (3.6c) is the basic result of this paper. It is a differential 
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equation determining the evolution of IT along the fluid flow lines, equivalent 
to the central results of Bardeen (1980) and Ellis et al. (1989); see equation 
(4.9) in Bardeen (1980) and equation (28) in Ellis et al. (1989). 

An important feature of the above discussion is a demonstration that, 
for the case of a general perfect fluid with nonzero pressure, the evolution 
of the fields IT and F r satisfying equations (3.6c) and 

F r = 3  [~o (e~ - n~ + P~ 1 er T~ e-~r ) - (er + P r -  n~ Hl''r 

(3.9) 

is exactly decoupled from the evolution of D~ A, A r', and S '7~~. Thus, if one 
finds how to define O r and the gradient of F directly from the observations 
(see Section 5), the resulting simplification can be enormous. Finally, it is 
quite clear in our analysis that the evolution of F (and hence of F r) is 
completely independent of the wavelength of the fluctuation. This is in 
contrast with the case of equations (3.6b)-(3.6f), for which, as shown below, 
such effects cannot be ignored. 

Among the problems that can be studied with this sort of approach, the 
examination of the effect of inhomogeneities on the time development of 
perturbations presents a most interesting challenge. Thus, for example, it 
would be important to provide a rigorous derivation of the Jeans instability 
via a linearized system of equations and to explicitly show that the evolution 
of IT is affected by particle horizons. Clearly, we here concern ourselves 
with situations where the temperature does not vanish in the background (To 
:/: 0); otherwise the Jeans criterion is irrelevant to this evolution, whether 
we consider large- or small-scale inhomogeneity, because the individual world 
lines evolve independently [see, e.g., Banach and Piekarski (1994c, Section 
6) or Section 4 of this paper]. In any case, equations (3.6c) and (3.9) will find 
their most interesting applications in considerations of the gauge-invariant 
quantity IT for large values of the wave vector, away from the usual hydrody- 
namic regime where more conventional methods are successful. 

4. UNIVERSES WITH A PRESSURE-FREE BACKGROUND 
FLUID 

4.1. Equations Describing the Perturbation of a Flat 
Robertson-Walker  Model 

Matter is treated here as an assemblage of material particles, all having 
the same proper mass m, which in the case of a chemically inert fluid might 
be a hydrogen gas during the dust-dominated epoch, from a redshift Z 
1000 until Z ~ 30 or so. Under these assumptions, we can compare the 
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hydrodynamic model with a full kinetic-theory description (Ellis et al., 1983; 
Banach and Piekarski, 1994a-c; Banach and Makaruk, 1995). But the latter 
provides a most fundamental route to calculating the energy density and 
pressure and to verifying that physically, and in some sense mathematically, 
natural equations of state are of the form (Banach and Piekarski, 1994a-c) 

e 4"rr- l /2mnIRz2( l+2kBT )1/2 = z 2 exp( -  z 2) dz (4.1 a) 
m 

p = -~ ~r-~2nkBT z 4 1 + 2 m z2 exp( -z  2) dz (4.1b) 

where kB is the Boltzmann constant. 
Now implement a time-dependent canonical transformation from the 

original gauge-invariant variable F to a new gauge-invariant variable K 
obeying 

K := M kBToF (4.2) 

Turning our attention back to equations (2.8) and (3.6a), we then see that K 
will satisfy a transformed equation of the form 

K = 3 [(e~ -- n~ + p~ err -- (er + pr -- n~ er (4.3) 

After a bit of mathematical manipulation which employs only the equations 
of state (4.1a) and (4.1b), we find from equations (2.8) and (4.3) that the 
following equations hold: 

To = - 2nTo (4.4a) 

K = - 2 H K  (4.4b) 

Thus, because of the assumptions (4.1a) and (4.1b), To and K evolve at the 
same rate as R -2, .i.e., ToR 2 = const and the value of KR 2 is independent 
of time. 

In a similar fashion, using equations (4.1) and (4.2), we can transform 
the remaining propagation equations in the system (3.6). These transformed 
equations have the advantage (as compared with the original ones) that, for 
To = 0, they take a very simple form. More specifically, if the temperature 
vanishes in the background, equations (3.6) simplify to 
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4 
Ii: + ~ K = 0 (4.5a) 

1 ) - 2 0  = 3 t ~r~ K (4.5b) 
3t - ~  K - ~-~ .rs 

4 Or & IT = 1 1 gr.~ K (4.5c) (IT)" + ~ - 3fl ~~ ~rs~PqK,pqs -- t'2 ,s 

A = 3fI (4.5d) 

4 ~rs 2 A~.~ I 1 ~rs~pqKpq 
(a'r 3R 

3 3 1 ) ~- R -2 ~PqarSpq - -~ ~rqASppq -- "~ ~sqArppq "4- "~ ~rsAPqpq 

3t2 ~pq(~rk['~Skp q ..~ ~,sk('~r ~ + 3t~" ~rkRsn('~p 
32R 4 . " ~ .kpq) ~ o o , ,  .p.~ (4.5e) 

sijrs : 4 . . . .  -at ( ~ sq~ P[t A J ]r'pq -- ~ rq~ P[t A J]S'pq) (4"50 

where the expansion factor R is given by 

R(t) = Ct 213 (4.6a) 

with 

C := (3"n'mO) I/3, 0 = const (4.6b) 

Clearly, one also deduces from equations (2.5a) and (4. la) that the background 
number density no is related to the cosmic time t by 

4 
no(t) - 3mt2 (4.7) 

The analysis simplifies still further when the fluid, already assumed to 
be pressure free in the background (To = 0 implies P0 = 0), is also pressure 
free in the perturbed space-time (K = 0). Equation (4.5c) then becomes the 
standard equation for zero-pressure density perturbation growth relative to 
proper time along the flow lines in an expanding universe, obtained by 
Lifshitz (1946) in his pioneering study of the instability of Robertson-Walker 
universe models. 

One final word regarding the physical interpretation of K. If To = 0, 
we immediately find from equations (2.13b), (3.4b), and (4.2) that 



Gauge.lnvariant Cosmological Perturbations 681 

K = _1 kB (4.8) 
m i~=0 

Thus K measures the relative size of the temperature perturbation ~T relative 
to the Boltzmann temperature mlkB. 

4.2. Solutions of the Perturbed Equations 

Here it will be convenient to restrict attention to the so-called scalar 
perturbations. We assume that this notion is well understood in perturbation 
theory. Nevertheless, we refer the interested reader to Mukhanov et al. (1992, 
p. 212) for a detailed definition of scalar, vector, and tensor perturbations. 
The (scalar) solution of equations (4.5) is given by 

K = dl t-4/3 (4.9a) 

3 dtt_4/3 3 ~'~ = -~ q- - ~  ~Pq(dlt-213),pq + d2t z13 (4.9b) 

~ = -~ g~'~ dlt -413 + ~ ~Pq(dlt-~3).pq -t- ~rs(d3t-I -t- d#~3)., (4.9c) 
,s 

9 dlt_4/3 9 m = -~ q- - ~  ~Pq(dlt-213).pq q- 3d2t 2/3 (4.9d) 

( 9 I mrs = grpgsq dst-I + ~ dlt-2/3 + d6t213) pq 

1 ~rs~Pq( dSt-I + 9 I 3 - ~  dlt-~3 + d6t2J3 (4.9e) 
,pq 

s i j r s  : [ ( ~ s q ~ p [ i ~ j ] r _ _  ~rq~pl i~j ls )d7149 q 

-~[~sq~PtS~Jlr(~dst-l +4-~d,t-2/3-d6t2J3 ) 

(~ 9 I] __ grq~p[igjls d5 t-t + ~_  dlt -2J3 - d6 t2/3 (4.90 
�9 / _1 ,pqkn 

where C is a constant satisfying equation (4.6b). Included in this solution 
are seven arbitrary functions of spatial positions (denoted dr, d2 . . . . .  and 
dr), such that for dl = 0 and d3 = 0 the gauge-invariant quantity O r is 
proportional to t 213. If d~ = 0, equation (4.9c) becomes the standard equation 
for zero-pressure or zero-temperature density perturbation growth relative to 
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proper time along the flow lines in an expanding universe, giving the expected 
modes with powers of - 1 and 2/3. From d3 = 0, d4 = 0, and equation (4.9c) 
it follows that iT goes as  t -2/3, showing that there is also an extra decaying 
mode in iT in the physical case, that is, if d~ > 0. Moreover, at the late 
stages of cosmic expansion where it is physically reasonable to assume that 
P0 = 0, there are no solutions of the "bounded and oscillatory" type. Thus 
in the case considered here (vanishing background pressure), the evolution of 
K, f i ,  l)r, A, A% and S'7~s is independent of the wavelength of the perturbation. 

One knows full well that linear propagation equations for the gauge- 
invariant variables are always obtained by performing some complicated 
algebraic and differential operations on equations (2.16). Thus the crucial 
remaining task in interpreting the results of any gauge-invariant theory based 
on the assumption P0 = 0 or To = 0 is to verify whether all solutions D of 
equations (4.5) are elements of the image 5~ of ~/~0 under A, i.e., whether 
D equals A([~30]) for some [~3o]. Here we recall that A defines a "coordinate 
system" on the quotient space ~'/@0 and that ~ := A(~/~o). In fact, part of 
the problem involves determining the fields K, f i ,  fl r, A A% S u~.~ consistent 
with the definitions (3.4), (4.2), and the condition that the original quantities 
Q0O, Q0~ D, F ~s, U r, M, and K must satisfy equations (2.16) specialized to 
the T O = 0 case; such complexity is the price one pays for eliminating the 
gauge-dependent variables as unknowns. 

Consequently, we now follow an alternative procedure for deriving the 
time development of gauge-invariant variables K, fi  . . . . .  S ij~s. The procedure 
is simply this. First, we specialize equations (2.16) to the case of vanishing 
background temperature. The corresponding equations and solutions may be 
found, e.g., in Banach and Piekarski (1994c), pp. 5897 and 5902, equations 
(5.5) and (6.1). Here, in order to obtain a particularly simple member of the 
equivalence class [~30] of ~do, it will be convenient to work in synchronous 
gauge (QOO = Qor = U 0 ___ 0 ) .  Clearly, in this program, after solving equations 
(2.16) for the To = 0 case, the evolution of basic gauge-invariant variables 
can be found directly from the definitions (3.4). It is easily shown that this 
evolution is completely independent of  the gauge chosen. 3 The resulting 
formulas for K, 12 . . . . .  S u~ are then compared with the results (4.9). In 
view of what we have explained above, it is possible to prove that the gauge- 
invariant equations (4.9) give physically well-defined modes of growth and 
decay if and only if the following additional conditions hold: 

3Suppose that the symbols D, Er., U ~, N, and R0 have the same meaning as in Banach and 
Piekarski (1994c). Then the following relations are satisfied: D = - D ,  F r' = -E r . ,  U r = 
U r, M = N, and R = Ro. Comparison of  equation (4.8) with equation (4.6c) of  Banach and 
Piekarski (1994c) shows that K denotes the relative size of  the temperature perturbation 8T 
relative to the Boltzmann temperature m/kB (c = 1). Here and in Banach and Piekarski (1994c) 
the constant C is given by equation (4.6b). 



Gauge-lnvariant Cosmological Perturbations 683 

1 1 02cl 
. . . .  ~r~ _ _  (4.10a) dl ~ c3, d2 8C 2 O x  r O x  s 

2 ~ O~d5 3 ~ 0~cl 
d3 = - ~ Ox~ax~, d4 = 2 - - ~  Ox~Ox - - - - z  (4.lOb) 

3 1 
d6 - Cl, d7 = -~-cl (4.10c) 

20C 2 .) 

The coefficients c~ and c3 are two functions of spatial positions; these coeffi- 
cients have exactly the same meaning as those appearing in equations (6.1) 
of Banach and Piekarski (1994c). Of course, one wishes to have some idea 
of the allowed spatial dependence of Cl and c3. However, this can only be 
found by considering the full nonlinear field equations. The form of dl . . . . .  
d7 follows directly from the form of ClC3, and d5 as a consequence of the 

identities (4,10); thus only three of the seven coefficients are independent. 
This also suggests that in each particular case one should carefully check on 
the properties of equations (2.16) and (3.6), because it is quite probable that 
some of the solutions to equations (3.6) are not consistent with the definitions 
of basic gauge-invariant variables. 

These problems are also present in other gauge-invariant approaches 
to cosmological perturbations. Indeed, in a companion paper (Banach and 
Piekarski, 1996a) we demonstrated that if ~K is an arbitrary gauge-invariant 
quantity, then this quantity can be constructed directly from the basic variables 
through purely algebraic and differential operations. Thus the time develop- 
ment of ~K is always obtainable from the generic system of gauge-invariant 
equations. For nonbarotropic perfect fluids, this system consists of equations 
(3.6). Therefore, it should not be surprising that the general method for 
deducing the existence of physical and unphysical solutions for ~ must 
coincide with that already made familiar. This method is successful because 
it enables us to identify those solutions of the generic system which are 
elements of the image space ~ of ~/~0; such solutions always exist. 

As explained at the beginning of Section 4.2, this discussion refers only 
to the scalar part of D. However, if the vector and tensor solutions of equations 
(3.6) and (4.5) are taken into account (Mukhanov et al., 1992, p. 212), then 
our conclusions remain basically unchanged. Examples illustrating the above 
can also be given. (For lack of space, we will not consider them in this 
article.) Another remark is also in order. A special case of equations (4.9) is 
obtained by setting Cl = const, c3 = const, and d5 const. Because of these 
assumptions, we easily find that the perturbed metric is also of Robertson- 
Walker form and that there are no growing hydrodynamic modes. Obviously, 
we must postulate that c3 > 0; in other words, we must seek solutions for 
which the pressure or the temperature is nonzero. If c3 = 0, a homogeneous 
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scalar perturbation is really no perturbation at all, but an inappropriate choice 
of the background. If c3 > 0, appeal to the theory of perturbations at the 
level Cl = const, c3 = const, and d5 = const is both legitimate and useful. 

5. THE PHYSICAL MEANING OF BASIC GAUGE-INVARIANT 
QUANTITIES 

5.1. The Key Variables 

Let {A(x, e); e E I} be a curve of geometrical objects (matter variables, 
tensor fields, etc.), and suppose that A(x, e) depends differentiably on e. As 
explained already by Ehlers (1973), the infinitesimal perturbation of Ao := 
(A), ~=0 is i nvariant under gauge transformations if and only if for all generating 
vector fields v, the Lie derivative of Ao with respect to v equals zero: 

~s = 0 (5.1) 

What are natural geometrical objects A(e, x) satisfying equation (5.1) for all 
v? In discussing perturbations away from a k = 0 Robertson-Walker universe 
model, the only case of physical interest is a scalar A that is constant in the 
unperturbed space-time (X, g(0~), or any tensor A that vanishes in (X, gt0))- 
Also, a constant linear combination of products of Kronecker deltas 8'~ is 
acceptable from this point of view (Stewart and Walker, 1974); here, however, 
no such combination occurs naturally. 

We can use the definition of a projection tensor into the tangent three- 
spaces orthogonal to u '~, 

h ~'~ := g~'f~ + u~'u f3 (5.2) 

to write down a list of all the simple tensor fields A satisfying Ao --- 0; these 
tensor fields are described as follows. 

1. The orthogonal spatial gradients of n, T, and the expansion O := u'~;,~: 

X r := h~'~nfs, Y~' := h'~13T.~ (5.3a) 

Z '~ := h'~130 p (5.3b) 

2. The vorticity, shear, and acceleration: 

to~,f3 := h,~h~"ui~:~,j (5.4a) 

cr ~,f~ := h,~ %O" u~ ..: v) --~Oh~,f3 (5.4b) 

ti'~: = u~'~13u f~ (5.4c) 

3. The electric and magnetic parts E~,~, H,~I3 of the Weyl tensor C,~,I3~: 
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I / "  I-~ ~/v or 
E,~I3 : =  C ~ u ~ u  ~, H~f~ : =  T , . . , ~ u  -q 13oru (5.5) 

These are the simplest tensor fields which vanish in a k = 0 Robe r t son -  
Walker universe model.  Thus we can easily find some "simple" gauge-  
invariant quantities by first differentiating these tensor fields with respect to 
e and then setting e equal to zero; in particular, denoting by 8A the derivative 
of  A with respect to e at e = 0, we obtain 

8X 0 = O, ~ X  r = n o R - 2 1 P  

BY ~ = O, BY ~ = ToR-2Br~F,~ - - -  

~Z 0 = 0, ~Z r = R-2H~rSA,s - - -  

~O)00 = 0 ,  ~O)0r = 0 

1 
~OJrs = ~ (~ rq~sP  - -  ~rp~sq)f~P,q 

&roo = 0, Bcror = 0 

~O'rs = __ R2 HC6rp?3sqA Pq 

8a 0 = 0, ~t~ r = -R-2~rs~'~ - - -  
,s 

BEoo = 0, BEor = 0 

1 1 
BE~s = -~ R2HB~pB.wA pq + -~ R2(/:/ 

(5.6) 

l T 0 ~ r  (5.7) 
3R2H 

I H ~  r (5.8) 
R2H 

(5.9a) 

(5.9b) 

(5.10a) 

(5.10b) 

J--~-- Or + ~ HfZ ~ (5.11) 
3R2H 3R  H 

(5.12a) 

+ a2)~3rpSsqA pq 

I R2f_l~pq~pq~rs 1 - ~ - ~ R2(/2/q.- n2)~pqAPq~rs 

1 1 
12H (~rP~'~P's -~- ~sPOP'r) -~- ~ ~'~P,p~rs 

1 1 ( n  d- H2)~"~P,p~rs q- ~ (f-1 + H2)(~rp~-~Ps q- ~sp~"~P.r) 18H2 

1 ~-~rs ..1r 1 ~pq~.pqbrs 1 -- -~ , 6 -- 2 aPq arnasm S pmnq 

1 Bpq~n,,Brs S pm~q (5.12b) +g 
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As regards ~H,~a, the treatment of this quantity, while certainly possible, is 
formally too elaborate for the present work. 

Using equations (5.6) and (5.7), we get explicit expressions for ~'-~r and 
F ,  in terms of 8X r and 8Y r which describe the density and temperature 
inhomogeneities we wish to investigate. The quantity X ~' ~ e ~X ~' is measur- 
able in the sense that, as observed already by Ellis and Bruni (1989), "(a) it 
can be determined from virial theorem estimates (indeed, dynamical mass 
estimates determine precisely spatial density gradients), and (b) the contribu- 
tion to it from luminous matter can be found by observing gradients in the 
number of observed sources and estimating the mass-to-light ratio [Kristian 
and Sachs (1966), equation (39)]." Further, for small e, the magnitude of 
~. 8 Y  r directly indicates how rapid the spatial variation of temperature is. 
Thus this quantity seems to be measurable as well. From equations (5.10) it 
follows in turn that A '~a is uniquely determined by 8o-,~ when R and H are 
known. Finally, in these calculations, one sees illustrated why it is that basic 
gauge-invariant variables play such a large part in perturbation theory. They 
remind one that any gauge-invariant quantity is obtainable directly from D 
"= {X, F, 1), ~ ,  A, A ,~, SiJ "s} through purely algebraic and differential 
operations. At first sight, this fact seems highly mysterious in the case of 
equation (5.12b), for how could the infinitesimal changes in E,~ relate to D if 
these changes depend on the metric tensor perturbations Q'~a alone? However, 
equation (5.12b) only illustrates a general theorem first established by Banach 
and Piekarski (1996a, Appendix) for an almost-Robertson-Walker uni- 
verse model. 

Ellis and Bruni (1989) have developed a formalism based on gauge- 
invariant variables which are perturbations of quantities which vanish on the 
background. The main purpose of this discussion was to show that all these 
variables can be derived in a straightforward manner from D. Our analysis 
here is not complete, of course, but this paper does not allow space for the 
more detailed comparisons. Nevertheless, in Section 6 we briefly describe 
how our basic variables relate to those obtained by Bardeen (1980). 

5.2. Relationship to Thermodynamics 
A perfect fluid usually satisfies the property that 

( n s u ' ~ ) : ~  = 0 (5.13) 

where s is the specific entropy, i.e., the entropy per particle. Another useful 
quantity is the specific free energy 

= e _ T s  (5.14) 
n 

It is convenient to take n and T as independent quantities and to postulate 
an equation of state 
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= ~(n, T) (5.15) 

The first law of thermodynamics (Smarr and Taubes, 1980), 

d~J = n-2p dn - s d T  (5.16) 

then defines p and s in terms of n and T: 

p = n2 00--~ n , s -  aT  (5.17) 

If we put s = -OO/OT in equation (5.14), we find that 

e (5.18) 

Thus, so long as the fluid remains in local equilibrium, the values of p and 
e can be ascertained from information which is static and universal. This 
information consists in the functional form of the relation (5.15). 

When equation (5.13) is combined with the equation of balance of 
number density, 

(nu'~);,~ = 0 (5.19) 

we derive that the perfect fluid is locally adiabatic: 

u~s~ = 0 (5.20) 

That is, entropy is constant along the flow lines of the fluid. In this way, we 
arrive at the following conclusion: the specific entropy s is a scalar that is 
constant in the unperturbed space-time. More suggestively, directly from 
equation (5.20) we see that the value of the entropy perturbation ~s is invariant 
under gauge transformations. Differentiation of s --- - a ~ / O T  with respect to 
e at �9 = 0 then will yield the additional gauge-invariant quantity we seek. 
In fact, we find from equations (5.17), (5.18), and 

To - 3 (eo - noeM + po)H = - 3 T o P r  H (5.21) 
eT eT 

that 

~s = e___r F (5.22) 
no 

where F is given by equation (3.4b). Thus F is proportional to the entropy 
perturbation ~s. 

Of course, the interpretation just presented for the gauge-invariant quan- 
tity F is of a quality essentially different from those of the previous sections, 
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which involved no arguments based on the "first" and "second" laws of 
thermodynamics. 

6. DISCUSSION AND CONCLUSION 

In this and a companion paper (Banach and Piekarski, 1996a), we have 
presented a totally gauge-invariant framework for studying the time develop- 
ment of perturbations away from homogeneous, isotropic cosmological mod- 
els permeated by a nonbarotropic perfect fluid. Nonbarotropic perfect fluids 
are perfect fluids where (e, p) and (n, 7) are functionally dependent" e = 
e(n, T), p = p(n, T). Matter, which locally is subject to energy dissipation 
and hence to viscous stresses, was not discussed, however, because (in all 
probability) we shall gain more by working on kinetic theory (Ellis et al., 
1983; Banach and Piekarski, 1994a-c; Banach and Makaruk, 1995) than by 
trying to develop formal phenomenological theories remotely related to real 
physical situations. Nevertheless, our approach is sufficiently flexible and 
broadly based that it can be easily extended to materials more complex than 
we have considered here. 

The general covariance of Einstein's theory of gravity implies that two 
perturbations ~30 and 8 ~  are equivalent if (and only if) they differ by the 
action of an "infinitesimal diffeomorphism" on the background solution ~0. 
The corollary of this observation is as follows: the mathematical object of 
most physical interest is not just one perturbation ~30, but a whole equivalence 
class [~0]  of all perturbations ~,~ which are equivalent to ~ 0 -  This class 
reduces to 8~o itself if and only if for all v, ~v~0 can be set equal to zero. 
Often, so long as the general condition ~,~0 #= 0 holds, one works with just 
one representative member 8 ~  of the equivalence class [~0] .  However, the 
resulting problem is that the quantity M (the fractional variation in density 
along a world line) usually determined in perturbation calculations is com- 
pletely dependent on the gauge chosen and hence has no physical reality. 
For this reason, ~ 0  does not appear to be the object to use to formulate 
perturbation theory. The equivalence class [8~0] substitutes for ~ 0  for 
that role. 

Nevertheless, it is not simple to achieve the stated aim in perturbation 
theory by means of the equivalence class [8~30], since it is not uniquely 
determined from the standard gauge-invariant variables, yet the very nature 
of gauge-invariant cosmological perturbations we have in mind demands 
some sort of analytical expression to be used for the explicit and unique 
characterization of [~0] .  In the past, comparatively little attention has been 
focused upon this general problem. With the help of a geometric approach 
to cosmological perturbations (Banach and Piekarski, 1996a), we have found 
a complete set D of basic gauge-invariant variables that uniquely represent 



Gauge-lnvariant Cosmological Perturbations 689 

[lifo] in almost-Robertson-Walker universe models. Also, by appropriate 
combinations and differentiations of these basic variables we have proved 
that any complicated gauge-invariant quantity can be expressed in terms of D. 
These results were derived without making any explicit or implicit reference to 
the method of scalar-, vector-, and tensor-field harmonics. In fact, the analysis 
below shows that this method, which originally was proposed to effectively 
separate out the time and space variations (Gerlach and Sengupta, 1978a), 
is very useful but not necessary for giving a complete gauge-invariant formula- 
tion of perturbation theory. Here it can be used to decompose equations (3.6) 
harmonically. We refer the interested reader to Kalnins and Miller (1991) for 
a detailed discussion of this point. 

Only after one has considered these sorts of basic questions will one be 
able to focus upon such comparatively practical matters as studying the time 
development of D or determining a set of gauge-invariant quantities that are 
directly related to density fluctuations [for a summary of earlier approaches 
to this problem see, e.g., Mukhanov et al. (1992) and the literature quoted 
there]. Thus, it was shown in Section 3.2 that, in a perfect-fluid approximation, 
the basic variables satisfy equations (3.6), partial differential equations involv- 
ing F, f~, f~,  A Ar'L and S ijr" in tractable combinations. If, furthermore, 
one is willing to model the pressure effects in an otherwise pressure-free 
background ideal fluid, proceeding as if the system in question were a rarefied 
gas during the dust-dominated epoch, one is led to equations (4.5) that were 
formulated in Section 4.1. What remains, of course, is to discuss in some 
greater detail the physical meaning of D; this was done in Section 5. 

In particular, the important physical object is the orthogonal density 
gradient X r obtained by multiplying F~ r by ~noR-2: 

X r ~ ~noR-21q ~ (6.1) 

Ellis and Bruni (1989) gave the first systematic treatment of the properties 
of X r. There is a problem with X~: it is not dimensionless. However, if we 
define X~ by 

~ := R2(noH)-IF3r.~X.~ ~ r (6.2) 

we obtain a quantity which is gauge invariant and dimensionless and which 
in addition embodies most closely the intention of the usual (gauge-dependent) 
definition M. 

How do our variables relate to the gauge-invariant variables E,,, and ~.~ of 
Bardeen (1980)? [See equations (3.13) and (3.14) in his paper.] A completely 
general perturbation of the gravitational field can be written as a linear 
combination of perturbations associated with individual harmonics. Scalar 
harmonics Qr are solutions of the scalar Helmholtz equation (Bardeen, 1980) 

~Q~~ + k2Q ~~ = 0 (6.3) 
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The wave number k sets the spatial scale of the perturbation relative to the 
comoving background coordinates. From now on we assume that the separa- 
tion of F, II ~, and A r'~ into individual harmonics has been made. We restrict 
attention to the so-called scalar perturbations (Mukhanov et  al., 1992, p. 
212). Let 

1 
I-I r : =  3R2H--------- 5 ( - 2 H ~  r + Toer~sF,~) (6.4a) 

1 
l-I r s  . =  2R 21 (~rPl-lsp + 8"mI-I~,p) - ~ ' ~  I-lPp~ ~s + 2 R - 2 H A  ~s (6.4b) 

Interpreting II ~ in the linear approximation, this quantity can be identified with 
the fractional energy gradient [see equation (22) in Ellis and Bruni (1989)]: 

II ~ := -- (h~e .p )  (6.5) 
e0 i �9 = 0 

It then follows from the definitions of ylr and l-Irs that 

~ i i r =  _ k R - 2  ~,,~rSQ].O) (6.6a) 

and 

el-I ~'~ = k2R -4 = ~rP~"qO(0) (6.6b) g v ~ . , pq  

To obtain these results, we have introduced the vector (Bardeen, 1980) 

Q~O) : = _ (1/k)Qr r (6.7a) 

and the traceless, symmetric, second-rank tensor (Bardeen, 1980) 

Q~,O) .=  k - Z Q  (~ "]- I~rsQ(~ (6.7b) 

Using equations (6.4), we now see that ~,, and E~ give us heavily disguised 
information about F, f l  ~, and A ~'. However, the behavior of E,, and E R for 
k = 0 presents an obstacle from the standpoint of applications; ~,, and ~g 
appear to be singular near k = 0. Our approach is to deal directly with D, 
so that equations (3.6) remain  va l id  a n d  non t r i v ia l  e ven  i f k  = 0. Thus some 
aspects of the general method can still be illustrated by assuming that the 
perturbed metric is also of Robertson-Walker form (Banach and Piekarski, 
1994a-c). 

As the final point of this discussion, we observe the following: In the 
case of scalar perturbations (and only in this case), it is interesting to define 
a potential ~ for 8Er,~. This can be done by using a formula of the form 

~Ers = ( ~ P r ~ q s  - -  I ~ r . c ; ~ P q ) ~ ) , p  q (6.8) 

Thus, to first order in the deviations from the background solution, �9 is a 



Gauge-lnvariant Cosmological Perturbations 691 

potential for the electric part of the Weyl tensor. This potential was originally 
introduced by Bardeen (1980); in his notation, ~ = ~a = --OH. The analysis 
of Mukhanov et  al. (1992) supports the interpretation of d~ as the relativistic 
generalization of a Newtonian gravitational potential [see also Jaffe (1994)]. 
Of course, in a similar fashion, we can define potentials for our basic gauge- 
invadant variables ~'~r mrs (The potentials for F, l l ,  and A are simply F, f l ,  
and A, and S iirs. Then, since ~ is related to D by equations (5.12b) and 
(6.8), it will be possible to express dp in terms of these more elementary 
potentials. This fact also explains why �9 is not a simple gauge-invariant 
quantity. 

To sum up: In this and the companion paper (Banach and Piekarski, 
1996b) we have tried to show how, thanks to the existence of a bijection 
between ~/~0  and ~b, the equivalence class [~0]  can serve as the basis on 
which to erect a representation of density inhomogeneities in an almost- 
Robertson-Walker universe model. We believe that the present analysis puts 
perturbation theory on a firmer mathematical foundation than that by the 
previous analyses. 

NOTE ADDED INPROOF 

Since this paper was completed, we have been able to improve the 
discussion of Sections 3.2 and 4.2 and to generalize the results by introducing 
an optimum system of covariant and gauge-invariant propagation equations, 
leading to more explicit conclusions. A paper presenting these improvements 
and generalizations is in press (Banach and Piekarski, 1996b). 
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